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The numerical time integration of an initial value problem based upon the nonlinear 
Vlasov equation as applied to an axisymmetric, inhomogeneous plasma column has been 
developed. All six components of the electric and magnetic fields are advanced self- 
consistently in time. An assumption has been made which neglects purely electro- 
magnetic modes. Each field contains a contribution from plasma source terms cal- 
culated by a Green’s function technique as well as a boundary value contribution 
which may be time dependent. The Vlasov equation has been reduced to a convenient 
numerical form by an extension of the standard Fourier-Hermite expansion. Radial 
dependence is discretized. Results are presented on the streaming instability of the 
electrostatic column. 

The need for a general technique to simulate cylindrical, radially inhomogeneous 
plasma columns has arisen from the present research in controhed thermonuclear 
fusion. Multidimensional problems have proven too complex for general analytic 
analysis and have been simulated numerically by a variety of techniques, most of 
which are based upon calculation of individual particle trajectories [I]. Maintaining 
sufficiently small statistical noise levels in these simulations requires large numbers 
of particles (severely taxing even the best computational facilities), We describe 
herein an economic alternative for simulating some aspects of the nonlinear 
behavior of a plasma column in a 5-D phase space (p, z, a, , ug , us) by transform 
methods. Provisions are made to advance both the plasma dynamics in 2-D as 
well as all six components of the electric and magnetic field (neglecting purely 
radiative mdes) in time. 

The applications of such a computer code to present CTR experiments appear 
to be numerous. The obvious difficulties associated with multidimensional 
simulation are the expected requirements of large computer memory and long 
running times. Such requirements have not proven to be excessive by present 
standards since the electrostatic column results discussed here and elsewhere [2, 31 
have been obtained with not more than 20,000 single precision words to represent 
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the plasma and field quantities and less than 50,000 single precision words for the 
entire running code. Run times have been approximately 40 set per axial plasma 
period (w;‘) on a Honeywell 635. 

I. MODEL AND BASC EQUATIONS 

The model which serves as a basis for the simulation is shown in Fig. 1. The 
diffuse boundary column is represented on a grid extending to p = a; and external 
fields may be applied by fixing the appropriate boundary conditions on the surface 
p = b. It is assumed that no significant plasma source currents or charges exist 
in the region between p = a and p = b. As already discussed, the column is 
independent of azimuth; and anticipating the Fourier expansion of the axial z 
dependence, only one periodicity length L of the axial coordinate is displayed. 
The existing computer code functions with the assumption of mirror symmetry 
on each end of L (though there is no fundamental difficulty in relaxing this 
requirement). 

FIG. 1. The cylindrical model. 

The simulation is based upon the dimensionless cylindrical Vlasov equation for 
electrons: 

(~$4 - v,B, + 4) av, 

- (v,B, - upBz + E,J $ - (v,B, - %Bo + Es) g = g ( . 
c 
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The equation has been scaled in terms of the electron plasma frequency 
CO,’ = (&q2Naxiar/m), the electron thermal velocity (z& = 3kT/m), and the plasma 
length (A, = Uth/OJ,) as follows: 

B - (mw,/s> cB, 
E - (mw,/q) vt&, 
f-"ff(&l~D3/xz>, 

(2) 

(3) 
(4) 

x -+ ADX, (5) 
v + UthV, (6) 

t + w4. (7) 

The fields must be solutions of Maxwell’s 
inhomogeneous wave equations 

equations, here written as the vector 

( v2 

vp+lijj 
~2 at 

t i 
--$Vxj 

(8) 

with the charge and current densities given by 

p = dv(fi -f), s (9) 

j = - dv vJ s (10) 

The ions fi(p, z) constitute an immobile positive background. 
Reduction of this set of equations to a numerical algorithm begins with the 

Fourier expansion of the axial dependence of all quantities; that is, 

f 6% z, 0, 7 % > 0, 9 t) fnco, v,, %T vz 3 t) 
% z, 2) 
Bb, z, t> . (11) 
P@, z, t) 
Kf, -7 t) 

The Kinetic Equation 

Each Fourier component of the distribution function f,(p, v, , u6 , v, , t) is now 
expanded in a triple Hermite series as 
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The Hermite polynomials are orthonormal for the weight function exp(--v2/20). 
0 is unity for the u, and v, series. The radial dependence of fn is discretized on the 
radial grid pa . 

Hereafter, the 2 coefficients will be assumed to have the subscript set (s, q, r, 7, n). 
Explicit subscripts will be displayed only for those indices differing from this set. 
Substituting these expansions into (I), we have 

2 Z(t) = -qll2 $ z,-, j “n - (4 + lY2 g z,+1 j 
% 

+ 5 Kr + 2Y2(r + 1)1’2 -&--1.r+2 + rZ,-J 

_ (4 + lY2 
Pn 

C(r + 1) Z,+l + (r - 1)1/2 r1/2Zp+l,r-21 

112 - inka s 
[( ) 

z,y-l + (s + lY2 z 
(5 (5 s+1 

I 

- B$,,-n, (($)1’2 (u - 1) Zs-~,g-1.n’ + g (+)112 ZS+I.&)] 

+ r112 [-(q + 1)1’2 B,Ln,Zu+~,T-~,n* + E,f,n-n,ZT-l.n, 

+ B,P,,-,L ((+)l” (0 - 1) Zs-L-M, + u (+)“’ Zs+w-l.n.)] 

+ ($)1’2 [(q + V/2 B~,n-nG~.cr+~n~ + -G,n-,iZs-1.n’ 

- (r + 1)1’2 B~,la-n,Z,-~,r+~.n, (13) 

The derivative with respect to radius is now accomplished with centered finite 
differencing represented by the operator d. More discussion of the grid and 
grid-determined techniques will be presented in later sections. 

It is obvious that even for a few terms in each expansion, the five-subscripted, 
complex Z array will require large amounts of computer memory. The storage is 
halved by using a perfect reflection condition, formally f@, z, v, , U, , v, , t) = 
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f(p, -z, a, 9 V& 3 -0, 7 t). Using this, coupled with the reality condition, we find 
Zsorsn(t) is purely real (imaginary) when s is even (odd). Reflection symmetry also 
produces the additional advantage that only the real parts of E,,“, En6 and B,” and 
the imaginary parts of B,o, B,*, and B,* are required. These conditions may also 
be deduced directly as a consequence of the reflection symmetry at z = 0, L. 

It is well known that the number of nonzero Hermite coefficients in the represen- 
tation grows with time [4, 61. Large errors can result from the truncation of the 
Hermite series resulting from the absence of Z-array elements above the necessarily 
finite upper limit on Hermite coefficients M. To control the effect of truncation, 
we use a 3-D analog of a technique used successfully in 1-D problems [S-7]. 
A velocity space smoothing term based upon the modified Fokker-Planck operator 
is introduced on the right-hand side of (1). 

8-m IG = -rc@ * GPV) + (W~v2>>f 

with the corresponding form in the Z representation being 

(14) 

=/at IG = -Ye@ + 4 + r> &mm(O. (15) 

Note that the smoothing term depends only on the sum of the Hermite indices 
so that equivalent relaxation of the Hermite coefficients having the same value of 
s + q + Y is produced by (15). 

The form of the smoothing or “collision” term suggests that the triply infinite 
velocity space Hermite expansions could be terminated along a diagonal in the 
transform space. Accordingly, only terms in the series for which q + r + s < M 
are kept. This has the effect of reducing by a factor of between 4-6, depending on M, 
the amount of run time and storage required as compared to that for a series with 
q, r, s < M. This is equivalent to computing all velocity moments up to and 
including v”. As a workable choice for yC it has been found that yC = l/M is 
satisfactory, i.e., no dramatic numerical instabilities arise and the values for the 
oscillation frequency and damping decrement in a stable, Maxwellian, homogeneous 
column tend toward the collisionless, linear analytical values as M increases [5, 61. 
The effect of the smoothing term by itself, neglecting all but the time derivative 
on the left-hand side of (13) would be to produce an exponential relaxation of each 
2 coefficient from its initial value towards zero. The e-folding time of that relaxation 
is M/(s + q + r) in dimensionless units. Thus, the larger the value of s + q + r, 
the shorter the relaxation time. 

The effects of the smoothing term on the physical properties of the solution 
can be checked by varying M, the size of the Hermite representation, while holding 
all other parameters constant’ and making several runs. As mentioned above, 
although the results are not collisionless, the convergence towards collisionless 
values is easily demonstrated in the special, homogeneous case where collisionless, 
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linear, analytic calculations can be made. Note that the macroscopic charge and 
currents are represented by coefficients for which q + r + s = 0 and 1, corre- 
sponding to the “relaxation times” of cc and M. 

The Field Equations 

Equation (13) is in a form which can function as a time derivative operator 
for each Z element in a time integration algorithm assuming the availability of 
self-consistent field components. These components must necessarily be calculated 
from Maxwell’s equations (8). This task is greatly simplified by first considering 
the magnitude of the terms resulting from the operator on the left-hand side of (8), 
roughly, 

1 w2clJ 2 __ - 

[ 
v2 _ 1 a2 y ru 

-1 
12hD2 9’ Y (unmagnetized), 

c-2 at2 1 w20J 2 (16) __- A, f2pL2 c2 Y (magnetized), 

where 1 is a characteristic length, pL is the Larmor radius of a thermal particle, 
and CO, is the cyclotron frequency. Using these approximations, the ratio for the 
first term to the second can, in both cases, be shown to be c2fv& . Thus, providing 
we are content to look at those processes for which the phase velocity Vph Q c, 
we may neglect the second, numerically troublesome, term in the operator on the 
left-hand side of Eq. (8). 

Physically, this assumption implies that fields propagate much faster than the 
fastest particle; and aZZ particles experience the effect of a time varying field before 
any particle moves a significant amount. Numerically, this assumption, which is 
formally equivalent to neglecting the displacement current in Ampere’s law, allows 
the field calculations to be made without regard for plasma source term history. 
The modified form of (8) used for field calculations, Fourier-transformed and 
expressed in cylindrical coordinates, is the familiar inhomogeneous Bessel equation 

where 

(17) 

B?s4 1 -( I/c2)(nkJ,” - (a/a,) J,,“) 

4%” 0 -w~“Pw~P>@Jnm) 

P 1 W2FW> Jn” 
EfbZ 0 nkp”, + (l/c2)(Wt) J,” 

(18) 
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The azimuthal and axial field components for n > 0 are calculated as the 
superposition of a contribution due to plasma source terms within p = b and 
another contribution from the boundary value applied at p = b. Using the 
appropriate Dirichlet Green’s function, the first contribution becomes an integral 
over all plasma source terms, and the boundary value contribution is the corre- 
sponding homogeneous solution to (17). The field components take the following 
form. 

PC = min(p, P’), P> = max(p, p’). 

Substitution of (18) into (19) and integrating by parts, we have for n > 0, 

B,Q4 t) = - $ [ (+ - K,) joo dp’ p’{Jn~‘I1 + J,“Z,) 

(19) 

+ & jb dp’ p’ 1 Jn” (+ - K,) + Jn” (+ 4 K,)] 1 
P 

4Wp) 
+ Bn-Yh t) I,(&,) 2 (20) 

nk I, 
-7 [( 

-- K, 1 joo dp’ p’J,*h + IO j” 

+ B;:t)+$$ 

b dp’ p’JnQ (+ + K,)] 
0 

(21) 
0 

Enz@, t) = nk [ (* - K”) Jo’ dp’ P’ {Pn + & $ Jnz/ IO 

+ Zo j” dp’ P’ la. + 
Io(nkp) 

II + En”@, t) I,(&),) 7 
a,, s I,(nkb)/K,(nkb). (23) 
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The radial field components for all n are calculated by direct integration of the 
divergence relations 

B,D(p, t) = - 1 p jop dp’ prnkBnZ(p, t>, (24) 

&a”(~> t) = ; 1.’ dp’ p’Gdp> t) + nk&*(p, t)>. (25) 

These calculations are carried out with axial fields on the right-hand sides which 
are newly computed from (21) and (23). In this manner, all field components are 
calculated from and consistent with the instantaneous sources (plasma charge and 
current densities as well as external fields affecting the plasma through the boundary 
values at p = b). 

For n = 0, we find the perfect reflection condition on each end of the periodicity 
length L requires that there be no J&, and therefore no Bi=, . Similar arguments 
can be used on the charge density to show that Ei=, is necessarily zero. Thus only 
the Et=,, and Bi=, components need to be calculated; this is accomplished by direct 
integration of (17). 

E:so(p, t) = f [-& 1 (b2 ; ‘“) 1; dp’ p’ s,’ dp” ; J&,, 

- j b dp’ P’ j-;’ dp” ; JL / + &,(b, t)] , 
P 

(26) 

%L(p, t> = $ j” dp’ J,“=, + B;&, t). 0 
(27) 

Despite the complicated appearance of the integrals for the field components 
(20~(27) their evaluation at each time step is simplified because only the sources 
vary in time. All of the functions except the sources are evaluated only once per run 
and are then stored for use in the calculation of the fields at each time step. The 
field calculations require negligible computer time compared to the dynamical 
equation. Also, a variety of boundary conditions can be used with no modifications 
other than changing input parameters. 

II. SELF-CONSISTENT TIME INTEGRATION 

Equations (13) and (20)-(27) constitute a set of equations that can be written as 
a computer algorithm to follow the nonlinear evolution in time of the palsma 
column. The flow chart given in Fig. 2 shows the procedure used to integrate both 
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the 2 array and the seIf-consistent fields by means of a second-order Runge-Kutta 
algorithm. The essential feature which allows the nonlinear solution to be followed 
in time is that new field components are calculated from the most recent Z array 
before calculation of the new time-advanced Z array. 

FIG. 2. The time integration flow chart 

III. NUMERICAL PROCEDURE 

Since the general method of initializing the distribution function is to add small 
perturbations to inhomogeneous equilibria, one necessarily knows the zeroth-order 
radial profiles of the charge and current density at t = 0. We have found that by 
scaling out the charge density profile in each Z element, much less accuracy 
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(implying less computation time) is required of the finite difference approximation 
necessary to evaluate (13). If we make the replacement 

-aI > t> = k%h?> z*h 3 t>, 
&@,> = -%7=r=o,n,n(Pn 9 t = o>, 

then the finite difference becomes 

(28) 

After substitution of (28) and (29) into (13), g&J is divided out of (13). The finite 
differences near the grid endpoints are approximated by Taylor series. 

The advantage of this scheme is that the basic equilibrium profile is easier to 
maintain with small numbers of grid points at large spacing. While other Z 
coefficients may not have the same profile as that of the charge density, they are not 
rendered more difficult to compute. We find that for most subscript sets (s, q, r, q, n) 
that the accurately known first term on the left-hand side of (29) dominates the 
expression. 

In stable cases where the z-independent radial profile does not change rapidly 
away from its initial value, a further saving of computation time can be realized 
by neglecting all the zeroth-order contributions to the n = 0 time derivatives. 
Since the zeroth-order terms cancel exactly for the equilibrium, initially and for a 
short time, the dominant contributions to the n = 0 time derivatives is from 
second-order terms contained in the convolution sum. In runs where the results 
are the same whether or not the zeroth-order terms are included, computer time 
can be saved in parameter studies by neglecting these terms. 

The field integrations are also initialized using the known radial dependence of 
the initial source terms. The basic integration algorithm is based on a Taylor’s 
series expansion of the integrand about a point midway between two grid points. 
Expanding through third order and integrating term by term, we have 

(30) 

with the even powers of Ap dropping out. Looking at the integrands in (20)-(27), 
all can be written as the product of a source term S,(p, t) and the time-independent 
Green’s function of radius R,(p) in terms of modified Bessel functions. Thus the 
right-hand side of (30) becomes 

+ (Ap3/WEKOoJ S&n , t> + 2&‘@,) &a’@, > t> + MP,) X(P, 3 t>l- (31) 
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The radial function R,(p) and its derivatives are evaluated initially by polynomial 
approximation and may be determined very accurately, providing the liberty of 
using very simple interpolation and difference techniques to determine the source 
functions and derivatives between grid points. 

It has proven expedient to “teach” the algorithm to calculate very accurately 
the equilibrium fields given the equilibrium charge and current densities. The 
necessary modifications, determined by ratios between calculated and known 
equilibrium fields, are incorporated directly into the appropriate set of functions 
R,(p) during the initial evaluation. For the usual applications, these correction 
correction factors have not deviated from unity by more than 5 %. 

IV. THE UNSTABLE ELECTROSTATIC COLUMN 

Initial studies have been made on both stable Maxwellian and two-stream 
unstable electrostatically contained columns in which the magnetic field has been 
eliminated by assuming the velocity of light to be infinite. The stable results have 
been presented elsewhere [2, 31. The Gaussian electron profile in radius is contained 
by a radial electric field which results from an excess positive charge within the 
column. 

The unstable equilibrium profile is 

f = (2~‘)-~/~ exp( -p2/d2) uZ2 exp( -v2/2) (32) 

for the electrons and, for the ions, 

j& = (2r)-3/2[exp(-p2/d2) + 4/P] exp(--v2/2). (33) 

The containing field may be shown to be 

E&,(p) = 2p/d2. (34) 

Running with four grid points (starting at p = 3X, and spaced every 6h,), 
two Fourier modes, and between 13-17 Hermite coefficients in each velocity 
coordinate, small sinusoidal axial current perturbations of the form j, = 
(27~)-~/~~ exp(-p2/d2) cos(kz) are added to (32) to initially perturb the equilibrium. 
The exponential growth which characterizes the two-stream instability is evident 
in both II = 1 field components near the axis at p = 3hn (Figs. 3 and 4). The growth 
rates in both components are greatly diminished for all k/kD by increasing the 
inhomogeneity (Fig. 5). The n = 2 components at p = 3 grow at approximately 
twice the corresponding n = 1 growth rates, as predicted by linear theory. 

Attempts to demonstrate clearly the nonlinear limitation of exponential growth 
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have been unsuccessful, due, at least in part, to the reduced growth rate resulting 
from the inhomogeneity. A similar run in the homogeneous limit (d = co) indicates 
a relatively abrupt nonlinear limitation of Ei=, at approximately t = 33~;~. It is 
apparent in Figs. 3 and 4 that the exponential growth rate of the field components 
decrease with time. This nonlinear effect suggests that a limit exists and that the 
limitation will not be as abrupt as in the homogeneous case. 

r --- I I Hermite Corfficirnts 

4 8 12 16 20 24 28 32 36 40 

FIG. 3. E,,P unstable time profile with M = 13, NG = 4, dp = 6, d = 10, N = 3, l = 0.02 
and At = 0.1. 

FIG. 4. En” unstable time profile corresponding to E,P profile in Fig. 3. 

The n = 1 radial electric field at p = 15 (Fig. 3) exhibits a nonphysical change 
in sign at t - 10~;~. It has been determined that this sign change is produced by 
a mild grid instability which, for the parameter sets of interest here, has always 
contained less than 1% of the total field energy of the system. Similar runs with 
the grid spacing Ap reduced by a factor 2 and with twice the grid points more than 
triples the time at which the difficulty appears. 
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FIG. 5. Axial unstable y/w, vs k/k,, at p = 3 from runs using M = 
and At = 0.1 for d = 10,30, co. 

.I5 r 

t P’ 3 n . 

-‘k, 

13, NG = 4, Ap = 6 

V. ACCURACY OF THE SOLUTION 

The usual means of ascertaining the convergence of the several expansion 
methods utilized is to increase the number of terms or grid points of the represen- 
tation in question. One of the more obvious convergence questions concerns the 
accuracy of the finite differenced radial derivatives. As a standard of comparison, 
a run with parameters of s dp (the radial position of the first grid point) = 3, 
NG (the number of grid points) = 8, dp (the grid spacing constant) = 6, d = 30, 
13 Hermite coefficients, 3 Fourier modes, and d t = .l was made. Doubling dp 
to 6hn in a similar run to test grid convergence caused a variation in ,??;I=, (p = 15) 
of approximately .4% after 9~;~. The radial electric field is more strongly 
dependent upon the grid size, as one would expect by comparing (23) and (25). 
In the En” calculation, the Green’s function integration tends to smooth the coarse 
radial representation of the charge density. The absence of this smoothing in the 
E,,” calculation is evident in the greater .7 % deviation between the radial electric 
fields at p = 15 and 9w;l in these same two runs. 

As previously mentioned, the parameter set dp = 6, d = 10 is mildly susceptable 
to grid instability on the outer grid points. The instability does not appear in the 
stable Landau damping runs [2, 31 using these grid parameters. Decreasing the 
inhomogeneity (d = 30), doubling NG while reducing dp by a factor of 2 permits 
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unstable runs to be made in excess oft = 2%~;~ without difficulty. The nonphysical 
sign change does reappear in E,P=, (p = 21) at t - 14~;~ for d = 30 if dp is 
increased to 6 and NG dropped to 4. The conclusion is that for initializations that 
will deviate rapidly and significantly from the initial radial profile, either several 
more grid points are necessary or the scaling procedure (28) will have to be 
reevaluated on a periodic basis. 

The order of the Hermite representation M has a significant effect on the growth 
and decay rates of the plasma. Since the collision frequency of the collision term (15) 
is the inverse of M, collisional damping increases as M decreases. The additional 
damping resulting from finite A4 is clearly apparent in comparing the homogeneous 
(d = co), growth rates for various values of M (Fig. 6). A similar but less extensive 
investigation of the finite d cases for A4 = 10 and 12 indicates generally that runs 
with finite d have the same dependence on M as the homogeneous results. 

FIG. 6. Axial unstable y/q vs k/kD for various M in the homogeneous (d = 00) limit. 

r 

Almost all runs have been made with the 0, 1 and 2 Fourier modes, and as 
predicted by linear theory, the n = 2 modes grow exponentially at twice the n = 1 
growth rate [3,4]. It is apparent that several additional Fourier modes are necessary 
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for runs extended in time in excess of 40~;~. As shown in Figs. 3 and 4, for short 
time periods initialized with small IZ = 1 current perturbations, the amplitude of 
the n = 2 field components are at least a factor of 10 smaller than the IZ = 1 
components, containing only a negligible 1 ‘A of the total field energy. Thus, for 
growth rate studies obtained from runs approximately 12-15~;~ in time, retaining 
only the first 3 Fourier modes produced adequate accuracy. 

Convergence of the time integration has been investigated by running identical 
parameter sets with the exception of the time step. For example, reducing dt by 
a factor of 2 in the run used for comparison above, we have demonstrated that the 
two electric field components do not change by more than .5 % after being 
integrated in time 9~;‘. The agreement near the axis (that is, pl) is better than .l % 
for the same period. 

VI. COMPARISON WITH OTHER RELEVANT WORK 

Most previous studies in two-dimensional cylindrical geometry have been 
carried out in the limit of infinitely strong axial magnetic fields, effectively limiting 
the dynamics to one dimension. Most notably, qualitative agreement has been 
found with the analytic work of Lee [8], Book [9], and Harris [lo] when radial 
motion is eliminated in the simulation code. The conclusion by Harris that for 

FIG. 7. Axial unstable Y/W= vs d/h,, for Ef,=,(p = 3) at k/kD = 0.5 with M = 13. 

sufficiently strong inhomogeneity even the most unstable wavenumber can be 
stabilized appears to be supported even including radial currents (Fig. 7). The 
results of both Lee and Book were obtained in the limit of small k/kD and, as such, 
were useful primarily in that qualitative effects of the inhomogeneity could be 
established for k/k, < .3. 

581/16/x-5 
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VII. SUMMARY 

The techniques presented here have a far greater range of applicability than the 
unstable results presented here indicate. Both the stable [2] and unstable results are 
consequences of applying these techniques to the “standard test” that plasma 
simulations codes must handle. Of primary importance thus far has been the 
establishment of the early tendencies of the stable [2] and unstable plasma column 
which have realistic radial inhomogeneity. 

One of the most interesting capabilities is the ease with which one can recover 
nonlinear effects in the velocity profile by resumming the Hermite series [2]. Such 
detail in more than one dimension has been difficult if not impossible to demon- 
strate by other simulation techniques. 
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